STEREOSPECIFIC FRIEDEL-CRAFTS ALKYLATION OF BENZENE WITH 3-CHLOROBUTANOIC ACID AND 3-CHLORO-1-BUTANOL IN THE PRESENCE OF LEWIS ACID

S. Suga, T. Nakajima, Y. Nakamoto and K. Matsumoto

Department of Industrial Chemistry, Faculty of Technology, Kanazawa University, Kanazawa, Japan

(Received in Japan 1 July 1969; received in UK for publication 11 July 1969)

The Friedel-Crafts alkylation of aromatic hydrocarbons with alkyl halides or alcohols has been studied extensively and reviewed in great detail⁽¹⁾ and several works on the alkylation with haloalcohols have been reported. Olah and Pavlath⁽²⁾ showed that the alkylation of benzene with fluoromethanol in the presence of zinc chloride gave benzyl fluoride. Bachman and Hellman⁽³⁾ reported that aromatic hydrocarbons were alkylated with 1-halo-2-propanol or 1-halo-2-butanol in the presence of boron fluoride to give haloalkylbenzene derivatives.

On the other hand, the reaction of benzene with 3-chlorobutanoic acid (I) or 3-chloro-1-butanol (II) in the presence of aluminum chloride afforded 3phenylbutanoic acid (III) or 3-phenyl-1-butanol (IV) in our present work. In order to elucidate the mechanism of these alkylations, the reaction of optically active 3-chlorobutanoic acid or 3-chloro-1-butanol was investigated.

The results obtained under several reaction conditions are shown in TABLE I and II. The absolute configurations of (+)-I and (+)-II have been assigned to be S⁽⁴⁾, while those of (-)-III and (-)-IV to be R^(5,6). Thus, the alkylation of benzene with (+)-I proceeded with 43.2 % net inversion of configuration in the case of aluminum chloride catalyst at 5°. The alkylation with (+)-II proceeded also stereospecifically, although the inversion percentage was somewhat less than in the case of (+)-I.

3283

TABLE I

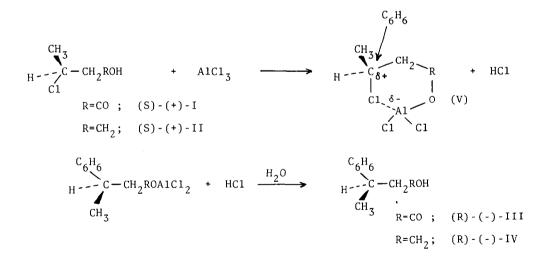
Reaction	of Benzene	with	(S)-(+)-3-Chlorobutanoic	Acid	in	the	Presence	of
Aluminum	Chloride							

Starting (+)-I	Temp, Time,		(-)-III		Inversion, ^a	
[α] _D (C 10,	°C	hr	Yield,	$[\alpha]_{D}(neat)$	8	
toluene)			8 	······		
+ 27.5°	10	4.0	81	- 13.7°	37.3	
+ 27.5°	5	4.0	46	- 15.8°	43.2	

TABLE II

Reaction of Benzene with (S)-(+)-3-Chloro-1-butanol in the Presence of Lewis Acid

Starting	Lewis	Temp,	Time	, (·	-)-IV	Inversion	n, ^b Recovered	(+)-II
(+)-II	acid	°C	hr	Yield,	$[\alpha]_{D}(neat)$	\$	Recovered,	$[\alpha]_{D}(neat)$
$[\alpha]_{D}(neat)$				\$			8	
+ 17.0°	A1C1 ₃	0	3.5	83	- 2.54°	13.7		
+ 23.2°	A1C1 ₃	-10	4.5	77	- 4.81°	20.0		
+ 21.9°	A1C13	- 20	4.5	trace			52	+ 21.9°
+ 23.4°	AlBr ₃	-10	4.5	92	- 4.01°	16.6		
+ 23.5°	SnC14	20	20				70	+ 23.2°


- a. Calculated from the reported rotation:(+)-I; $[\alpha]_{D}$ +46.6°(C 10, toluene)⁽⁷⁾ (-)-III; $[\alpha]_{D}$ -62.0°(neat)⁽⁵⁾.
- b. Although the optical rotation of (+)-II has not been reported, the optical purity of (+)-II is considered to be identical with the value of (+)-I used for the starting materials. Calculated from the reported rotation: (-)-IV; $[\alpha]_{\text{D}}$ -45.3°(neat)⁽⁵⁾.

Raising the temperature resulted in increases in racemic product, and starting materials were recovered without racemization at the lower temperature. In the alkylation with (+)-II, using aluminum bromide in place of aluminum chloride increased the yield of (-)-IV and decreased the optical purity of the product. When stannic chloride was used, the alkylation did not occur and (+)-II was recovered without racemization.

Price and Lund⁽⁸⁾ observed 1 % net inversion in alkylation with optically active 2-butanol and boron fluoride. Burwell and his co-workers found very small inversion in alkylation with alcohols⁽⁹⁾ and ethers⁽¹⁰⁾. Streitwieser and Stang⁽¹¹⁾ reported that the alkylation of benzene with 2-propanol-d₃ and boron fluoride proceeded with more than 93 % racemization.

Stereospecific Friedel-Crafts alkylation in the presence of aluminum chloride with such a considerable inversion as observed in our present work has not been reported, except for the alkylation with optically active cyclic compounds such as propylene oxide⁽¹²⁾, 2-methyltetrahydrofuran⁽¹³⁾, and γ -valero -lactone⁽¹⁴⁾.

The stereospecificity in alkylation with 3-chlorobutanoic acid (I) and 3chloro-1-butanol (II) may be due to the following proposed mechanism:

(+)-I or (+)-II reacts with aluminum chloride to form the quasi-ring intermediate complex (V) and hydrogen chloride. Benzene attacks the intermediate complex

No.38

as a nucleophile. However, the observed optical purity of (-)-III or (-)-IV indicates that the reaction proceeds with a considerable racemization due to carbonium ion character of V.

Consequently, we believe that Friedel-Crafts reactions with such acyclic compounds are much like alkylations with cyclic ethers (12,13) or lactone (14).

REFERENCES

- G. A. Olah, Ed., <u>Friedel-Crafts and Related Reactions</u>, Vol.II, Interscience Publishers, Inc., New York (1963).
- 2. G. A. Olah and A. Pavlath, Acta Chim. Sci. Hung., <u>3</u>, 425 (1953).
- 3. G. B. Bachman and H. M. Hellman, J. Am. Chem. Soc., <u>70</u>, 1772 (1948).
- 4. K. Freudenberg and W. Lwowski, Ann., <u>597</u>, 141 (1955).
- K. Imano and I. Mitsui, <u>Nippon Kagaku Zasshi</u> (J. Chem. Soc. Japan, <u>Pure</u> Chem. Sect.), <u>85</u>, 497 (1964).
- 6. D. J. Cram, <u>J. Am. Chem. Soc.</u>, <u>74</u>, 2137 (1952).
- 7. H. Scheibler and J. Magasanik, <u>Ber.</u>, <u>48</u>, 1810 (1915).
- 8. C. C. Price and M. Lund, J. Am. Chem. Soc., <u>62</u>, 3105 (1940).
- 9. R. L. Burwell, Jr. and S. Archer, *ibid.*, <u>64</u>, 1032 (1942).
- 10. R. L. Burwell, Jr., L. M. Elkin and A. D. Shields, <u>ibid.</u>, <u>74</u>, 4570 (1952).
- 11. A. Streitwieser, Jr. and P. J. Stang, *ibid.*, <u>87</u>, 4953 (1965).
- T. Nakajima, S. Suga, T. Sugita and K. Ichikawa, <u>Tetrahedron</u>, <u>25</u>, 1807 (1969).
- 13. J. I. Brauman and A. Solladie-Cavallo, Chem. Comm., 18, 1124 (1968).
- 14. J. I. Brauman and A. J. Pandell, <u>J. Am. Chem. Soc</u>., <u>89</u>, 5421 (1967).